Revision as of 17:26, 8 October 2008 by Jpfister (Talk)

Test Problem 4

$ a_{k} = \frac{1}{T} \int_{0}^{T}x(t)e^{-jk\omega _{o}t}dt $

From the problem statement we know that T=4

$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt $

Knowing that T=4 we can visualize the periodic signal in the range $ 0 \leq t \leq 4 $. x(t) = 1 for $ 0 \leq t \leq 1 $ and $ 3 \leq t \leq 4 $. Otherwise, x(t) = 0. Therefore:

$ = \frac{1}{4} \int_{0}^{4}x(t)e^{-jk\frac{2\pi}{4}}dt $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva