Revision as of 12:59, 8 October 2008 by Jmazzei (Talk)

$ \mathcal{X}(\omega) = \frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}} $

$ \ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega $

$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}(\frac{\frac{1}{2j}}{(2 - j4 + jw)^{2}} - \frac{\frac{1}{2j}}{(2 + j4 - jw)^{2}})e^{j\omega t}\,d\omega $

by looking at the table on p. 329 of the book some observations can be made:

the form $ \frac{1}{(2 - j4 + jw)^{2}} $ means that there is a term of the form $ \ te^{-2t} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett