Revision as of 12:11, 8 October 2008 by Cztan (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $ x(t) = e^{-at} u(t) $

$ \chi(w) = \mathcal{F} (x(t)) = \int^{\infty}_{-\infty} e^{-at} u(t) e^{-jwt} dt $

$ = \int^{\infty}_{0} e^{-at}.e^{-jwt} dt $

$ = \int^{\infty}_{0}e^{-(a+jw)t} dt $

$ = -\frac{1}{a+jw} [e^{-(a+jw)t}]^{\infty}_{0} $

$ = -\frac{1}{a+jw} [-1] $

$ =\frac{1}{a+jw} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang