Revision as of 11:20, 7 October 2008 by Anders89 (Talk)

Signal

$ x(t) = e^{3jt}*(u(t+5) - u(t-5)) + e^{-2t}*u(t)\, $


Transformed

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt\, $

$ = \int_{-\infty}^{\infty}e^{3jt}*(u(t+5) - u(t-5))e^{-j\omega t}dt + \int_{-\infty}^{\infty}e^{-2t}u(t)e^{-j\omega t}dt\, $

$ = \int_{-5}^{5}e^{3jt}e^{-j\omega t}dt + \int_{0}^{\infty}e^{-2t}e^{-j\omega t}dt\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett