Revision as of 17:56, 5 October 2008 by Jkubasci (Talk)

Compute the Fourier transform of the following CT signal using the integral formula:

$ \,x(t)=e^{-5(t+3)}u(t-1) + e^{-j\pi t}\delta(t-\frac{\pi}{2})\, $


Answer

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{-\infty}^{+\infty}e^{-5(t+3)}u(t-1)e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}e^{-j\pi t}\delta(t-\frac{\pi}{2})e^{-j\omega t}\,dt\, $

$ \,\mathcal{X}(\omega)=\int_{1}^{+\infty}e^{-5t}e^{-15}e^{-j\omega t}\,dt + \int_{-\infty}^{+\infty}\delta(t-\frac{\pi}{2})e^{-j(\omega +\pi)t}\,dt\, $

$ \,\mathcal{X}(\omega)=e^{-15}\int_{1}^{+\infty}e^{-j(5+j\omega)t}\,dt + e^{-j(\omega +\pi)\frac{\pi}{2}}\, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva