Revision as of 16:40, 26 September 2008 by Li186 (Talk)

Suppose we have a LTI CT signal y(t)=2x(t)

Unit Impulse Response h(t) and System Function H(s)

i) $ y(t)=2x(t)=> h(t)=2\delta(t) $

ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ =\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $

$ =\int_{-\infty}^\infty 2\delta(\tau)e^{-s\tau}d\tau $

$ =2e^{-s*0} $

$ =2 $

Response of the Signal and Fourier Series Coefficients

$ x(t)=3cos(3t) $

$ =\frac{3}{2}[(e^{j3t})+(e^{-j3t})] $

$ =\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t}) $

since we have $ e^{st} $ has a response of $ H(s)e^{st} $

so we can get

$ y(t)=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]H(s) $

$ =\frac{3}{2}(e^{j3t})H(j3)+\frac{3}{2}(e^{-j3t})H(-3j) $

$ =3e^{j3t}+3e^{-j3t} = 6cos(3t) $


Coefficients:

we observe that the output is just double the input, so the coefficients should be doubleed,too

From Q1 we can get that when k=1, $ a_1=3 $, and when k=-1,$ a_-1=3 $

others are all zero

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009