Revision as of 14:36, 26 September 2008 by Jmazzei (Talk)

DT LTI System

$ \ y[n] = 2x[n + 3] + x[n - 8] $


Unit Impulse Response:

$ \ h[n] = 2 \delta[n + 3] + \delta[n - 8] $


Frequency Response:

$ \ H(s) = \sum_{- \infty}^{\infty}h[n]e^{j \omega n} $


Plugging in the values:

$ \ H(s) = \sum_{- \infty}^{\infty}(2 \delta[n + 3] + \delta[n - 8])(e^{j \omega n}) $

$ \ = 2e^{j \omega 3} + e^{-j \omega 8} $


Part B

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang