Revision as of 07:12, 26 September 2008 by Rwijaya (Talk)

Obtain the input impulse response h(t) and the system function H(s) of your system

A very simple system:
$ y(t)=x(t)\, $ and $ x(t)=\delta(t) $

We can get $ h(t)=\delta(t)\, $
$ y(t) = \int^{\infty}_{-\infty} \delta(t) dt\, $

$ H(s)=\int_{-\infty}^{\infty}h(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{-\infty}^{\infty}u(\tau)e^{-s\tau}d\tau $

$ H(s)=\int_{0}^{\infty}e^{-s\tau}d\tau $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

$ H(s)=-se^{-s\tau}|_0^\infty \, $

Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009