Revision as of 12:55, 25 September 2008 by Thouliha (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition of fourier transform for DT signal

These are the fourier coefficients, which must be calculated from the function in this case, rather than vice versa in CT signals.

$ a_k = \frac{1}{N} \sum^{N-1}_{n=0} x[n] e^{-jk\frac{2\pi}{N} n} $

Where N is the period of the function.

Example of a periodic DT signal

The primary importance in the DT example, is making sure that a constant K exists, so that the signal can be forced to be periodic.

We will make a relatively low period, say $ \,N=3\pi $

$ \,x[n]=6sin(4\pi n)+2cos(2\pi n) $

We have to make the periods make sense in DT, so we must make sure that $ \,\frac{2\pi }{\omega_0} $ is a whole number for both functions, so multiply it in this fashion:

$ N_1=\frac{2\pi }{4\pi}k=\frac{1}{2}k $, and

$ N_2=\frac{2\pi }{2\pi}k=\frac{1}{1}k $

so $ \,k=2 $ makes them both integers:

$ \,N_1=1 $

$ \,N_2=2 $

and $ \,N_2 $ is the lowest usable period(ie the highest) and $ \,N=2 $

Now we have our period, and thus the limits of our sum. The limit goes to N-1, so we need to find $ \,x[0] $ and $ \,x[1] $:

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett