Revision as of 11:43, 25 September 2008 by Nkgentry (Talk)

CT LTI SYSTEM

I chose the following continusous-time linear time invariant system:

$ f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\! $

UNIT IMPULSE RESPONSE OF SYSTEM

To find the unit impulse response of the system, we set $ x(t) = \delta(t)\! $. Then we obtain the following unit impulse response:


$ h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\! $


THE SYSTEM FUNCTION

In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system. When we take the laplace transform, we find that $ H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\! $

RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1

Signal used in question 1:
$ f(t) = (3+j)cos(2t) + (10+j)sin(7t)\! $


From question 1, we also know that:
$ f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\! $


UNDER CONSTRUCTION

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood