$ e^{2jt} $ yields $ te^{-2jt} $ and $ e^{-2jt} $ yields $ te^{2jt} $
and the system is linear
since Euler's formulat states that : $ e^{jx} = \cos x + j\sin x \! $
$ e^{2jt} = \cos 2t + j\sin 2t \! $
and
$ e^{-2jt} = \cos -2t + j\sin -2t \! $ $ = \cos -2t + j\sin -2t \! $