Revision as of 12:43, 19 September 2008 by Dhopper (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Since Bob has knowledge of the secret matrix, he can find the inverse of the secret matrix. Using some basic knowledge of linear algebra, he can then multiply each (a,b,c) vector by the inverted secret matrix to yield the original matrix.

Since Eve does not know the secret matrix, she will have to use the idea of a basis.

The encrypted matrix:
$ \left( \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array} \right) $

Can be written as a basis, using the rows of the matrix, so that other vectors can be expressed as a linear combination of the basis.

For example, the vector $ \left( \begin{array}{ccc} 2a & b & 3c \end{array} \right) $
can be written as the linear combination of the rows of the encrypted matrix.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn