Revision as of 07:34, 18 September 2008 by Drmorris (Talk)

since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).

Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t) $.


The above solution works for this case, but it does not show the properties of linearity.

If $ x_1(t)=e^{2jt) $ and $ x_2(t)=e^{-2jt) $, Take the input signal to be $ \frac{1,2}(x_1(t)+x_2(t)} $. The response to the input is $ y(t)=\frac{1.2}y_1(t)+\frac{1,2}y_2(t) $ because the system is linear.

$ \frac{1,2}e^{2jt)+\frac{1,2}e^{-2jt}\rightarrowsystem\rightarrow\t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt}) $

$ t(frac{1,2}e^{-2jt)+\frac{1,2}e^{2jt})=t(/frac{1,2}(e^{-2jt)+e^{2jt})</ $

                            $ =t(/frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t)) $
                            $ =t(/frac{1,2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t)) $
      
                            $ =t(/frac{1,2}(2cos(2t)) $
                            $ =tcos(2t) $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn