since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).
Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t) $.
since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).
Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t) $.