Revision as of 17:59, 17 September 2008 by Tsafford (Talk)

A linear system’s response to $ e^{2jt} $ is $ t*e^{-2jt} $, and its response to $ e^{-2jt} $ is $ t*e^{2jt} $.

What is the system’s response to $ \cos(2t) $?


Well, if we convert $ \cos(2t) $ using euler's formula, we get $ 1/2 * e^{2jt} + 1/2 * e^{-2jt} $.


Since the system is linear, we can assume that with constants of 1/2,

$ 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t) $

So our result is

$ 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} $

Simplifying this yields

$ 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett