A linear system’s response to $ e^{2jt} $ is $ t*e^{-2jt} $, and its response to $ e^{-2jt} $ is $ t*e^{2jt} $.
What is the system’s response to $ \cos(2t) $?
Well, if we convert $ \cos(2t) $ using euler's formula, we get $ 1/2 * e^{2jt} + 1/2 * e^{-2jt} $.
Since the system is linear, we can assume that with constants of 1/2,
$ 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t) $
So our result is
$ 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} $