Revision as of 12:14, 16 September 2008 by Kschrems (Talk)

Basics of Linearity

ECE301HW3 ECE301Fall2008mboutin.JPG

We are given the following information:

  • For input $ x(t) = e $ (2jt) the output $ y(t) = te $(-2jt).
  • For input $ x(t) = e $ (-2jt) the output $ y(t) = te $(2jt).
  • The system is Linear.


We can break down the input $ \,\ x(t) = cos(2t) $ into $ \,\ x(t) = \frac{1}{2} * (e $(j2t) $ \,\ + e $(-j2t)$ \,\ ) $.

Now we can use the property of linearity to determine the output.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett