Revision as of 09:59, 12 September 2008 by Zhang79 (Talk)

Linearity and Time Invariance

Given system:

Input Output

X0[n]=δ[n] -> Y0[n]=δ[n-1]

X1[n]=δ[n-1] -> Y1[n]=4δ[n-2]

X2[n]=δ[n-2] -> Y2[n]=9 δ[n-3]

X3[n]=δ[n-3] -> Y3[n]=16 δ[n-4]

... -> ...

Xk[n]=δ[n-k] -> Yk[n]=(k+1)2 δ[n-(k+1)] -> For any non-negative integer k


Time Invariant System?

Suppose the system is defined as the third line where input is $ X_2[n]= dirac[n-2] $ and output: $ Y_2[n]=9 dirac[n-3] $ with a time delay of . Using the same method as in Part D, we can determine whether this system is time invariant or not.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal