Revision as of 14:43, 11 September 2008 by Tsafford (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Time Invariance

A system is time invariant if for a certain x(t) that produces an output y(t) if you shift the input to x(t-T) it just yields the same output shifted by the same T. y(t-T).

Time Invariant System

I propose that a system where

$ x(t) $ -> [SYSTEM] -> $ y(t) = 35x(t) $ is time invariant. Let's check.

Let $ x(t)=2e^t $ and $ T=5 $

$ x(t-T) = 2e^{t-5} $ -> [SYSTEM] -> $ 35*2*e^{t-5} $

$ x(t) = 2e^{t} -> [SYSTEM] -> <math>y(t-T)=35*2*e^{t-5} $

As you can see these two outputs are the same, so the system is time invariant.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin