Revision as of 13:53, 11 September 2008 by Thouliha (Talk)

Linearity

Background

Language Definition

A system is considered linear if 2 separate inputs, multiplied by 2 different constants, can produce 2 separate outputs multiplied by those same constants.

Mathematical Definition

A system is called linear if: For any inputs $ x_1(t) $ and $ x_2(t) $ yielding outputs of $ y_1(t) $ and $ y_2(t) $,

$ ax_1(t)+bx_2(t)=ay_1(t)+by_2(t)\,\! $

Example of Linear system

The easiest way to determine linearity is using standard definition:

Lets take the system $ y(t)=8x(t) $ , so lets get 2 y's and 2 x's out of that: $ y_1(t)=8x_1(t) $ for $ x_1(t)=t $

$ y_2(t)=16x_2(t) $ for $ x_2(t)=2t $

Now testing the theory:

$ ax_1+bx_2=a+2b $ and

$ ay_1+by_2=a8+b16 $ , which can be reduced to



Example of Non-Linear system

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett