Revision as of 11:09, 11 September 2008 by Sranka (Talk)

Linear system

A system is said to be linear if it satisfies the principle of superposition i.e if for an input A the system gives an output X and for an input B the system gives output then for an input ( a*A + b*B ) the system should yield the output as ( a*X + b*B ). Where a and b are any complex numbers.

Examples of linear system

$ X1(t)=\ 2t $

$ X2(t)=\ 2t^2 $

assume the function $ Y(t)=\ 5X(t) $

$ Y1(t)=\ 10t $

$ Y2(t)=\ 10t^2 $

now for $ aY1(t)+bY2(t)=\ a10t+b10t^2=aX1(t)+bX2(t) $


Examples of non linear system

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett