Introduction
The Laplace Operator is an operator defined as the divergence of the gradient of a function. $ {\large\Delta=\nabla\cdot\nabla=\nabla^{2}=\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]\cdot\bigg[\frac{\partial}{\partial x_{1}},\cdots,\frac{\partial}{\partial x_{N}}\bigg]=\sum\limits_{n=1}^{N}\frac{\partial^{2}}{\partial x^{2}_{n}}} $