Revision as of 11:00, 25 February 2019 by Wan82 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 2


Solution

a)
$ sinc^2(\dfrac{t}{a}) \Rightarrow |a|\Lambda(af) $ (CTFT)
Wan82_CS5-2.PNG

b)
$ y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T})) $

c)
minimum sampling frequency $ \dfrac{1}{T}\ge\dfrac{2}{a} $ $ f\ge\dfrac{2}{a} $ $ T\le\dfrac{a}{2} $

d)
$ T=\dfrac{a}{2} $
Wan82_CS5-3.PNG

e)
$ T=a $
Wan82_CS5-4.PNG


Similar Problem

2013 QE CS5 Prob1
2009 QE CS5 Prob1
2008 QE CS5 Prob3


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood