Revision as of 15:52, 19 February 2019 by Wan82 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 2


Solution

a)
$ sinc^2(\dfrac{t}{a}) \Rightarrow |a|\Lambda(af) $ (CTFT)
Wan82_CS5-2.PNG

b)
$ y(n)=sinc^2(\dfrac{nT}{a}) \Rightarrow X_s(f)=\dfrac{1}{T}\sum_{k=-\infty}^{\infty} X(f-kF)=\dfrac{|a|}{T}\sum_{k=-\infty}^{\infty}\Lambda(a(f-\dfrac{k}{T})) $

c)
minimum sampling frequency $ \dfrac{1}{T}\ge\dfrac{2}{a} $ $ f\ge\dfrac{2}{a} $ $ T\le\dfrac{a}{2} $

d)
$ T=\dfrac{a}{2} $
Wan82_CS5-3.PNG

e)
$ T=a $
Wan82_CS5-4.PNG


Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal