Revision as of 21:47, 18 February 2019 by Wan82 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \nabla_xl(x,\mu)=begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} $
$ \mu_1(x_1+x_2-2)=0 $
$ \mu_2(x_1+2x_2-3)=0 $
$ \mu_1>=0 $, $ \mu_2>=0 $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal