Revision as of 18:48, 1 December 2018 by Zkim (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the DT exponential signal below:


$ x[n]= e^{-j3\pi n} $


Solution

Norm of a signal:

$ \begin{align} |je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $


$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


$ E_{\infty} = \infty $.



$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


$ P_{\infty} = 1 $



Conclusion:

$ E_{\infty} = \infty $, $ P_{\infty} = 1 $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva