Table of CT Fourier Series Coefficients and Properties
Fourier series Coefficients
Function | Fourier Series | Coefficients |
---|---|---|
$ sin(\omega_0t) $ | $ \frac{1}{2j}e^{j\omega_0 t} - \frac{1}{2j}e^{-j\omega_0 t} $ | $ a_1 = \frac{1}{2j} a_{-1} = -\frac{1}{2j} and a_k = 0 for k not 1,-1 $ |
$ cos(\omega_0t) $ | $ \frac{1}{2}e^{j\omega_0 t} + \frac{1}{2}e^{-j\omega_0 t} $ | $ a_1 = \frac{1}{2} a_{-1} = \frac{1}{2} and a_k = 0 for k not 1,-1 $ |
Property Name | Property | Proof |
---|---|---|
Linearity | $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ | $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $ $ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $ |
Time Shifting | $ \mathfrak{F}(g(t - a)) = e^{-i2\pi fa}*G(f) $ | $ \mathfrak{F}(g(t - a)) = \int_{-\infty}^\infty g(t-a)e^{-2\pi ft}dt $ $ =\int_{-\infty}^\infty g(u)e^{-i2\pi f(u+a)}du $ |
Time Scaling | $ \mathfrak{F}(g(ct)) = \frac{G(\frac{f}{c})}{|c|} $ |
$ \mathfrak{F}(g(ct)) = \int_{-\infty}^\infty g(ct)e^{-i2\pi ft}dt $ subtitute : u = ct, du = cdt |
Frequency Shifting | $ \mathfrak{F}^{-1}[X(j\omega + omega_0)] = x(t)e^{-j\omega_0t} $ | $ \mathfrak{F}^{-1}[X(j\omega + omega_0)] = \frac{1}{2\pi} \int_{-\infty}^{\infty}X(j(\omega +\omega_0))e^{j\omega t} d\omega $ $ =\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega ')e^{j\omega (\omega ' + \omega_0)} d\omega $ $ =e^{j\omega_0 t}\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega ')e^{j\omega '} d\omega' $ $ =x(t)e^{j\omega_0 t} $ |
Time Reversal | $ \mathfrak{F}[g(-t)] = G(-\omega) $ | $ \mathfrak{F}[g(-t)] = \int_{-\infty}^{\infty}g(-t)e^{-j\omgea t} dt $ replace t with -t |
Complex Conjugate | $ \mathfrak{F}(g*(t) = G*(-j\omega) $ | $ g*(t) = [\frac{1}{2\pi} \int_{-\infty}^{\infty} G(-\omega)e^{j\omega t} d\omega]^* $ $ =[\frac{1}{2\pi} \int_{-\infty}^{\infty} G*(-\omega)e^{j\omega' t} d\omega]^* $ |