Revision as of 23:44, 18 March 2018 by Abinhamd (Talk | contribs)

Discrete-Time Fourier Transform Properties with Proofs


Property Name Property Proof
Periodicity $ \chi(\omega + 2\pi) = \chi(\omega) $ $ \chi(\omega+2\pi) = \sum_{n=-\infty}^{\infty}x[n]e^{-j(\omega +2\pi)n} $

$ = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} e^{-j\omega 2\pi} $
$ = e^{-j\omega 2\pi} \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $
$ = (1)\chi(\omega) = \chi(\omega) $
________________________________

Linearity $ ax_{1}[n] + bx_{2}[n] \rightarrow a\chi_{1}(\omega) + b\chi_{2}(\omega) $ $ \mathfrak{F}(ax_{1}[n] + bx_{2}[n]) = \sum_{n=-\infty}^{\infty}[ax_{1}[n] + bx_{2}[n]]e^{-j\omega n} $

$ \sum_{n=-\infty}^{\infty}ax_{1}[n]e^{-j\omega n} + \sum_{n=-\infty}^{\infty}bx_{2}[n]e^{-j\omega n} $
$ =a\chi_{1}(\omega) + b\chi_{2}(\omega) $
________________________________

Time Shifting & Frequency Shifting 1) $ x[n - n_{o}] \rightarrow e^{-j\omega n_{o}}\chi(\omega) $

2) $ e^{-j{\omega}_{o}n}x[n] \rightarrow \chi[\omega - \omega_{o}] $

$ \mathfrak{F}(x[n - n_{o}]) = \sum_{n=-\infty}^{\infty}x[n - n_{o}]e^{-j\omega n} $

let $ m = n - n_{o} $
$ \sum_{m=-\infty}^{\infty}x[m]e^{-j\omega m + n_{o}} $
$ = e^{-j\omega n_{o}}\sum_{m=-\infty}^{\infty}x[m] $
$ = e^{-j\omega n_{o}}\chi(\omega) $
________________________________

Conjugate & Conjugate Symmetry $ x[n] \rightarrow \chi^{*}(-\omega) $ $ \mathfrak{F}(x[n]) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} $

$ = \sum_{n=-\infty}^{\infty}x[n][cos(\omega n) + jsin(\omega n)] $
$ = \sum_{n=-\infty}^{\infty}x[n]cos(\omega n) + \sum_{n=-\infty}^{\infty}x[n]jsin(\omega n) $
$ = \sum_{n=-\infty}^{\infty}x[n]\frac{1}{2}[e^{j\omega n} + e^{-j\omega n}] + \sum_{n=-\infty}^{\infty}x[n]j\frac{1}{2j}[e^{j\omega n} - e^{-j\omega n}] $
Things Cancel out and you are left with..
$ = \sum_{n=-\infty}^{\infty}x[n]e^{j\omega n} $
$ = \chi^{*}(-\omega) $
________________________________

Parversal Relation $ \sum_{n=-\infty}^{\infty }\left | x[n] \right |^{2} = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $ $ \sum_{n=-\infty}^{\infty} x[n]x[n] = \sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)e^{j\omega n}d\omega) $

$ = (\frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)[\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}e^{j\omega n}]d\omega $
$ = (\frac{1}{2\pi}\int_{0}^{2\pi}\chi(\omega)[\chi(-\omega)]d\omega $
$ = \frac{1}{2\pi }\int_{0}^{2\pi}\left | \chi (\omega) \right |^{2}d\omega $
________________________________

Convolution $ x[n]*y[n] \rightarrow \chi(\omega)\gamma (\omega) $ ________________________________
Multiplication $ x[n]y[n] \rightarrow \frac{1}{2\pi}\chi(\omega)*\gamma (\omega)^{}_{} $ ________________________________
Duality NO DUALITY IN DT NO DUALITY IN DT

________________________________

Differentiation in Frequency $ nx[n] \rightarrow j\frac{\mathrm{d} }{\mathrm{d} \omega}\chi(\omega) $ ________________________________

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood