Revision as of 18:03, 21 August 2017 by Sun361 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Computer Engineering(CE)

Question 1: Algorithms

August 2013


Solution 1

(a) First, let us change the variables. Let $ n = 2^{m} $, so equivalently, we have $ m = \log_2 n $. Thus, $ \sqrt[]{n} = 2^{\frac{m}{2}} $.

Then we have: $ T(2^m) = 2 T(2^{\frac{m}{2}}) + \log {2^m} = 2 T(2^{\frac{m}{2}}) + m $. We denote the running time in terms of $ m $ is $ S(m) $, so $ S(m) = T(2^m) $, where $ m = \log n $. so we have $ S(m) = 2S(\frac{m}{2})+ m $.

Now this recurrence can be written in the form of $ T(m) = aT(\frac{m}{b})+ f(m) $, where $ a=2 $, $ b=2 $, and $ f(m)=m $.

$ f(m) = m = \Theta(n^{\log _{b}{a}}) = \Theta(n) $. So the second case of master's theorem applies, we have $ S(k) = \Theta(k^{\log _{b}{a}} \log k) = \Theta(k \log k) $.

Replace back with $ T(2^m) =S(m) $, and $ m = \log_2 n $, we have $ T(n) = \Theta((\log n) (\log \log n)) $.

For the given recurrence, we replace n with $ 2^m $ and denote the running time as $ S(m) $. Thus,we have $ S(m) = T(2^m) = 2 T(2^{\frac{m}{2}}) + m $

(b) $ 3^{f(n)} $ is NOT $ O(3^{g(n)} $). Here is a counter example:

Let $ f(n) = n $ and $ g(n)=\frac{n}{2} $. Then $ f(n) = O(g(n)) $. Now, $ 3^{f(n)}=3^n $, $ f(3^{f(n)})=O(3^n) $; however, $ O(3^{g(n)})=O(3^{\frac{n}{2}}) $. So $ f(3^{f(n)}) \neq O(3^{g(n)}) $.


Solution 2

(a) Assume $ T(n) = O(\log n) $, so
$ \begin{equation} \begin{aligned} T(\sqrt[]{n}) &= O(\log \sqrt[]{n} ) \\ &= O(\frac{1}{2}\log n) \end{aligned} \end{equation} $
So
, $ \begin{equation} \begin{aligned} T(n) &= 2 T(\sqrt[]{n}) + \log n \\ &= O(\log n ) + \log n \\ &= O(\log n) \end{aligned} \end{equation} $

(b) $ f(n) $ is $ O(\log n) $, then

$ f(n) <= g(n) $.

So,

$ \begin{equation} 3^{f(n)} <= 3^{g(n)} \end{equation} $


So, $ 3^{f(n)} $ is $ O(3^{g(n)}) $

Back to QE CE question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett