Revision as of 12:24, 7 December 2015 by Yan115 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

$ E(S_n)=E(\frac{1}{n}\sum_i^n X_i) =\frac{1}{n}\sum_i^n E(X_i)=0 $

$ E(X_i-S_n)=E(X_i-\frac{1}{n}\sum_k^n X_k) =E(X_i)-E(\frac{1}{n}\sum_k^n X_k)=0 $

$ E((X_i-S_n)S_n)=E(X_iS_n-S_n^2) $

As for any $ i,j\in \{1,2,...,n\} $, we have $ E(X_i\cdot X_j) = E(X_i)E(X_j)=0 $

$ E(X_iS_n-S_n^2) = E(X_iS_n)-E(S_n^2)\\ =E(\sum_k^nX_iX_K) - E(\sum_i^n\sum_k^nX_iX_K)\\ =\sum_k^nE(X_iX_K) - \sum_i^n\sum_k^nE(X_iX_K) \\ =0 $

Thus $ E(X_i-S_n)E(S_n)=E((X_i-S_n)S_n) $, $ S_n $ and $ X_i-S_n $ are uncorrelated.

Solution 2

$ S_n=\frac{1}{n}\sum_{j=1}{n}X_j $, note: in the problem statement, it should be $ \frac{1}{n}, because <math>S_n $ is the sample mean.

$ E[S_n]=E[\frac{1}{n}\sum_{j=1}{n}X_j] = \frac{1}{n}\sum_{j=1}{n}E[X_j ] = \frac{1}{n}\sum_{j=1}{n} \mu = 0\\ E[(X_i-\mu)^2]=E[X_i^2]=\sigma^2 $

$ E[X_iX_j]=\int_{-\infty}^{+\infty}x_ix_jf_{X_iX_j}(x_i,x_j)dx_idx_j=\int_{-\infty}^{+\infty}x_if_{X_i}(x_i)x_jf_{X_j}(x_j)dx_idx_j=E[X_i]E[X_j]=\mu\cdot\mu=0 $

$ E[X_i-S_n]=E[X_i]-E[S_n]=0-0=0 $

$ E[X_i\cdot S_n]=E[\frac{1}{n}\sum_{j=1}^{n}X_j\cdot X_i]=\frac{1}{n}\sum_{j=1}^{n}E[X_j\cdot X_i]=\frac{1}{n}\cdot \sigma^2 $

$ E[S_n^2]=E[\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}^{n}X_j\cdot X_i]=\frac{1}{n^2}\sum_{j=1}^{n}E[X_i^2]+\frac{1}{n^2}\sum_{j=1}^{n}\sum_{i=1}{n}E[X_i\cdot X_j]=\frac{1}{n^2}\cdot (n\cdot \sigma^2) + \frac{1}{n^2}\cdot 0 = \frac{\sigma^2}{n} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang