Revision as of 11:58, 7 December 2015 by Yan115 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015


Solution 1

Let $ \lambda = \frac{1}{\mu} $, then $ E(X)=E(Y)=\frac{1}{\lambda} $.

$ \phi_{X+Y}=E[e^{it(X+Y)}]=\int_{X}\int_{Y}e^{it(X+Y)}p(x,y)dxdy $

As X and Y are independent

$ \phi_{X+Y}=\int_{X}\int_{Y}e^{it(x+y)}p(x)p(y)dxdy = \int_{X}e^{itx}p(x)dx\int_{Y}e^{ity}p(y)dy=\phi_{X}\phi_{Y} $

And $ \phi_{X}=E[e^{itX}]=\int_{-\infty}^{\infty}e^{itx}\lambda e^{-\lambda x} dx \\ = \lambda \int_{-\infty}^{\infty}e^{-(\lambda -iu)x} dx = -\frac{\lambda}{\lambda-iu}e^{-(\lambda-iu)x}|_0^\infty\\ =\frac{\lambda}{\lambda-iu} $

So $ \phi_{X+Y}=E[e^{it(X+Y)}]=\phi_{X}\phi_{Y} =( \frac{\lambda}{\lambda-iu})^2=\frac{1}{(1+iw\mu)^2} $

Solution 2

$ \phi_X(w)=E[e^{iwX}]=\int_0^{+\infty}e^{iwX}\frac{1}{\mu}e^{-\frac{x}{\mu}}dx=e^{X(iw-\frac{1}{\mu})}\frac{1}{\mu}\frac{1}{iw-\frac{1}{\mu}}|_0^{+\infty}\\ = 0 - \frac{1}{\mu}\cdot\frac{1}{iw-\frac{1}{\mu}}=\frac{1}{1-iw\mu}\\ \phi_{X+Y}(w)=E[e^{iw(X+Y)}]\\ =\int\int e^{iw(X+Y)}f_X(x)f_Y(y)dxdy = \int e^{iwx}f_X(x)dx \cdot \int e^{iwy}f_Y(y)dy=\phi_X(w)\phi_Y(w)\\ =\frac{1}{(1+iw\mu)^2} $


Back to QE CS question 1, August 2015

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang