Revision as of 22:20, 2 December 2015 by Yan115 (Talk | contribs)


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2015



Question

Part 1.

If $ X $ and $ Y $ are independent Poisson random variables with respective parameters $ \lambda_1 $ and $ \lambda_2 $, calculate the conditional probability mass function of $ X $ given that $ X+Y=n $.

Click here to view student answers and discussions

Part 2.

Let $ Z(t), t\ge 0 $, be a random process obtained by switching between the values 0 and 1 according to the event times in a counting process $ N(t) $. Let $ P(Z(0)=0)=p $ and

$ P(N(t)=k) = \frac{1}{1+\lambda t}(\frac{\lambda t}{1+\lambda t})^k $

for $ k = 0, 1, ... $. Find the pmf of $ Z(t) $.

Click here to view student answers and discussions

Part 3.

Let $ X $ be independent identically distributed exponential random variables with mean $ \mu $. Find the characteristic function of $ X+Y $.

Click here to view student answers and discussions

Part 4.

Consider a sequence of independent and identically distributed random variables $ X_1,X_2,... X_n $, where each $ X_i $ has mean $ /mu = 0 $ and variance $ \sigma^2 $. Show that for every $ i=1,...,n $ the random variables $ S_n $ and $ X_i-S_n $, where $ S_n=\sum_{j=1}^{n}X_j $ is the sample mean, are uncorrelated.

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett