Revision as of 15:25, 3 September 2008 by Cocker (Talk)

%Cory Ocker (cocker@purdue.edu)

%9/5/08 HW1

%EE301 MWF 4:30

clear;

clc;


%first i went to http://www.hoerl.com/Music/music1_basic.html and read a

%tutorial on music because I don't know diddly about music notes


%define notes using

%http://www.techlib.com/reference/musical_note_frequencies.htm

A =220;

B =246.94;

C =261.64;

Db =277.20;

D =293.68;

E =329.64;

F =349.24;

Gb =370;

G =392;


%define delta

delta =1/20000;


%define beats (can range from 40 bpm to 200 bpm)

e =.25;

q =.5;

dq =.75;

h =1;

dh =1.5;

w =2;


%timings for notes

lengths =[h,q,q,dq,e,q,q,q,e,e,q,e,e,dh,h,q,q,dq,e,q,q,q,e,e,q,e,e,w,dq,e,...

   q,q,dq,e,q,e,e,q,q,q,q,w,dq,e,q,q,q,q,q,q,dq,e,dq,e,w,w];

%notes for song

notes =[A,B,Db,D,E,Gb,Gb,G,G,G,D,E,F,Gb,Gb,Gb,E,D,E,Gb,Gb,E,B,Db,D,Db,B,E,...

   A,A,B,Db,D,E,Gb,Gb,Gb,G,G,D,E,Gb,B,Db,D,B,A,D,Gb,A,B,Gb,E,D,D];



%regular speed

for lcv =1:length(notes)

t =0:delta:lengths(lcv);

wave =sin(2*pi*t*notes(lcv));

sound(wave,1/delta);

end



pause(5)


%double speed

for lcv =1:length(notes)

t =0:delta:1/2*lengths(lcv);

wave =sin(2*pi*t*notes(lcv));

sound(wave,1/delta);

end


pause(5)


%3/4 speed (sounds the best to me after testing)

for lcv =1:length(notes)

t =0:delta:3/4*lengths(lcv);

wave =sin(2*pi*t*notes(lcv));

sound(wave,1/delta);

end


pause(5)


%doubles the frequencies

for lcv =1:length(notes)

t =0:delta:lengths(lcv);

wave =sin(2*2*pi*t*notes(lcv));

sound(wave,1/delta);

end

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett