Post solutions for mock qual #2 here. Please indicate authorship!
Contents
Problem 1
Problem 2
Suppose $ u: \mathbb C \to \mathbb R $ is a non-constant harmonic function. Show that the zero set $ S = \{z \in \mathbb C | u(z) = 0\} $ is unbounded as a subset of $ \mathbb C $.
Clinton, 2014
Suppose for contradiction that S is bounded; that is, $ \exists R \forall z $ such that $ |z| \geq R \implies u(z) \neq 0 $. Let f = u + i'v analytic, where v is the global analytic conjugate for $u$. We will show that g = ef(z) is constant, thus $u$ is constant.