Back to all ECE 600 notes
Previous Topic: Functions of a Random Variable
Next Topic: Characteristic Functions
Random Variables and Signals
Topic 9: Expectation
Thus far, we have learned how to represent the probabilistic behavior or random variables X using the density function f$ _X $ or the mass function p$ _X $.
Sometimes, we want to describe X probabilistically using only a small number of parameters. The expectation is often used to do this.
Definition $ \qquad $ the expected value of continuous random variable X is defined as
Definition $ \qquad $ the expected value of discrete random variable X is defined as
where $ R_X $ is the range space of X.
Note:
- E[X] is also known as the mean of X. Other notation for E[X] include:
- The equation defining E[X] for discrete X could have been derived from the continuous X, using the density function f$ _X $ containing $ \delta $-functions.
Example $ \qquad $ X is an exponential random variable. find E[X].
Let $ \mu = 1/\lambda $. We often write
Example $ \qquad $ X is a uniform discrete random varibable with $ R_X $ = {1,...,n}. Then,
Having defined E[X], we will now consider more general E[g(X)] for a function g:R → R.
Let Y = g(X). What is E[Y]? From previous definitions:
or
We can find this by first finding f$ _Y $ or p$ _Y $ in terms of g and f$ _X $ or p$ _X $. Alternatively, it can be shown that
or
See Papoulis for the proof of the above.
Two important cases or functions g:
- g(x) = x. Then E[g(X)] = E[X]
- g(x) = (x - $ \mu_X)^2 $. Then E[g(X)] = E[(X - $ \mu_X)^2 $]
or
Note: $ \qquad $ E[(X - $ \mu_X)^2 $] is called the variance of X and is often denoted $ \sigma_X $$ ^2 $. $ \sigma_X $ is called the standard deviation of X.
Important property of E[]:
Let g$ _1 $:R → R; g$ _2 $:R → R; $ \alpha,\beta $ ∈ R, Then
So E[] is a linear operator. The proof follows from the linearity of integration.
Important property of Var():
Proof:
Example $ \qquad $ X is Gaussian N($ \mu,\sigma^2 $). Find E[X} and Var(X).
Let r = x - $ \mu $. Then
First term: Integrating an odd function over (-∞,∞) ⇒ first term is 0.
Second term: Integrating a Gaussian pdf over (-∞,∞) gives one ⇒ second term is $ \mu $.
So E[X] = $ \mu $
Using integration by parts, we see that this integral evaluates to $ \sigma^2+\mu^2 $. So,
Example $ \qquad $ X is Poisson with parameter $ \lambda $. Find E[X] and Var(X).
So,
$ E[X^2] = \lambda^2 +\lambda \ $
$ \Rightarrow Var(X) = \lambda^2 +\lambda - \lambda^2 = \lambda \ $
Moments
Moments generalize mean and variance to nth order expectations.
Definition $ \qquad $ the nth order moment of random variable X is
and the nth central moment of X is
So
- $ \mu_1 $ = E[X] mean
- $ \mu_2 $ = E[X$ ^2 $] mean-square
- v$ _2 $ = Var(X) variance
Conditional Expectation
For an event M ∈ F with P(M) > 0.
or
Example $ \qquad $ X is an exponential random variable. Let M = {X > $ \mu $}. Find E[X|M]. Note that P(M) = P(X > $ \mu $) and since $ \mu $ > 0,
It can be shown that
Then,
References
- M. Comer. ECE 600. Class Lecture. Random Variables and Signals. Faculty of Electrical Engineering, Purdue University. Fall 2013.
Questions and comments
If you have any questions, comments, etc. please post them on this page