Revision as of 14:48, 13 November 2013 by Apanneer (Talk | contribs)


Question 1

(a)

 
$ \begin{align} U_g \\\end{align} $
$ \begin{align} V_g \\\end{align} $
 
= $ \begin{align} \frac{1}{1+r_0} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} -r_0 \\\end{align} $
$ \begin{align} -r_0 \\\end{align} $ $ \begin{align} 1 \\\end{align} $
 
$ \begin{align} Z^{1/2} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} 0 \\\end{align} $
$ \begin{align} 0 \\\end{align} $ $ \begin{align} Z^{-1} \\\end{align} $
 
$ \begin{align} \frac{1}{1+r_1} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} -r_1 \\\end{align} $
$ \begin{align} -r_1 \\\end{align} $ $ \begin{align} 1 \\\end{align} $
 
$ \begin{align}Z^{1/2} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} 0 \\\end{align} $
$ \begin{align} 0 \\\end{align} $ $ \begin{align} Z^{-1} \\\end{align} $
 
$ \begin{align} \frac{1}{1+r_2} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} -r_2 \\\end{align} $
$ \begin{align} -r_2 \\\end{align} $ $ \begin{align} 1 \\\end{align} $
 
$ \begin{align}Z^{1/2} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} 0 \\\end{align} $
$ \begin{align} 0 \\\end{align} $ $ \begin{align} Z^{-1} \\\end{align} $
 
$ \begin{align} \frac{1}{1+r_3} \\\end{align} $
 
$ \begin{align} 1 \\\end{align} $ $ \begin{align} -r_3 \\\end{align} $
$ \begin{align} -r_3 \\\end{align} $ $ \begin{align} 1 \\\end{align} $
 
 
$ \begin{align} U_L \\\end{align} $
$ \begin{align} 0 \\\end{align} $
 
= $ \begin{align} \frac{Z^{3/2}}{\pi_{k=0}^{3}(1+r_k)} \\\end{align} $
 
$ \begin{align} r_3(r_2(r_0r_1Z^{-1}+1)+(r_1+r_0Z^{-1})Z^{-1})Z^{-1}+r_0r_1Z^{-1}+(r_2r_1+r_2r_0Z^{-1})Z^-1+1 \\\end{align} $
$ \begin{align}-r_0-r_1Z^{-1}-(r_3(r_2r_0+r_2r_1Z^{-1}+r_0r_1Z^{-1}+Z^{-2}))Z^{-1}-r_2r_0r_1Z^{-1}+r_2Z^{-2}\\\end{align} $
 
$ \begin{align} U_L \\\end{align} $
= $ \begin{align} \frac{Z^{3/2}}{\pi_{k=0}^{3}(1+r_k)} \\\end{align} $
 
$ \begin{align}1+(r_0r_1+r_1r_2+r_2r_3)Z^{-1}+(r_0r_1r_2r_3+r_0r_2+r_1r_3)Z^{-2}+r_0r_3Z^{-3}\\\end{align} $
$ \begin{align}-r_0-(r_0r_1r_2+r_0r_2r_3+r_1)Z^{-1}-(r_0r_1r_3+r_1r_2r_3+r_2)Z^{-2}-r_3Z^{-3}\\\end{align} $
 
$ \begin{align} U_L \\\end{align} $
$ \begin{align} V(Z) \\\end{align} $ = $ \begin{align} \frac{U_L}{U_g} \\\end{align} $ = $ \begin{align} \frac{\pi_{k=0}^{3}(1+r_k)}{1+(r_0r_1+r_1r_2+r_2r_3)Z^{-1}+(r_0r_1r_2r_3+r_0r_2+r_1r_3)Z^{-2}+r_0r_3Z^{-3}}\\\end{align} $



b) From the transfer function, we can see that there are three poles. If the poles are all real, there are three formants. If one pole is real and the other are complex pole pair, there are two formants.


c) We can change the area of each segments. In this way,$ r_k $ will change , thus the root of the denominator of V(Z) is changed, which determines the location of formants.


Back to 2013 Fall ECE 438 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett