Revision as of 15:04, 12 September 2013 by Msafarud (Talk | contribs)


Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Andrei Henrique Patriota Campos

$ x[n] = n^2 (u[n+2]-u[n-1]) $.

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

$ = 9 z^3 + 4 z^2 + z $

$ = z^3 (9 + 4 z^{-1} + z^{-2}) $

$ =X(z) = (9 + 4 z^{-1} + z^{-2})/(z^{-3}) $, for all z in complex plane.

Answer 3

Muhammad Syafeeq Safaruddin

$ x[n] = n^2(u[n+3]-u[n-1]) $

$ x[n] = n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) $

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

$ X(z) = 9z^3+4z^2+z+1 $


Answer 3

Write it here.

Answer 4

Write it here.


Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett