Revision as of 07:57, 1 June 2013 by Wang1287 (Talk | contribs)

Equivalences of Well-ordered Relation

Definitions

$ \langle A, R \rangle $ is an ordered class iff

  1. $ R\subseteq A\times A $
  2. (irreflexivity) $ \forall x \in A \langle x,x \rangle \notin R $
  3. (transitivity) $ \forall x,y,z \in A \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R $
  4. (trichotomy) $ \forall x,y \in A \langle x,y \rangle \in R \wee \langle y,x \rangle \in R \wee x=y $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood