Revision as of 08:38, 27 July 2012 by Sandy (Talk | contribs)


ECE Ph.D. Qualifying Exam in Communication Networks Signal and Image processing (CS), Question 1, August 2011


Question

Part 1. 25 pts


 $ \color{blue}\text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\left( \text{b} \right) \text{Find} f_{x}\left( x|y,z\right ). $

$ \color{blue}\left( \text{c} \right) \text{Find} f_{Z}\left( z\right ). $

$ \color{blue}\left( \text{d} \right) \text{Find} f_{Y}\left(y|z \right ). $

$ \color{blue}\left( \text{e} \right) \text{Find} f_{XY}\left(x,y|z \right ). $


Click here to view student answers and discussions

Part 2. 25 pts


 $ \color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $


Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett