Revision as of 16:12, 6 September 2011 by Xiao1 (Talk | contribs)

Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= u[n]-u[n-3] $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j0\omega}+\delta [n-1]e^{-j\omega}+\delta[n-2]e^{-j2\omega}]) $

$ =e^{-j0\omega}\sum_{n=-\infty}^{\infty}\delta [n]+e^{-j\omega}\sum_{n=-\infty}^{\infty}\delta [n-1]+e^{-j2\omega}\sum_{n=-\infty}^{\infty}\delta [n-2] $

$ =1+e^{-j\omega}+e^{-j2\omega} $

Instructor's comments: This is a bit long. Could you shorten your solution somehow? -pm

Answer 2

$ \mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} (u[n] - u[n-3]) e^{-j\omega n} $

$ = \sum_{n=-\infty}^{\infty} u[n]e^{-j\omega n} - \sum_{n=-\infty}^{\infty}u[n-3]e^{-j\omega n} = \sum_{n=0}^{\infty}e^{-j\omega n} - \sum_{n=3}^{\infty}e^{-j\omega n} $

Let l = n-3

$ = \frac{1}{1-e^{-j\omega}} - \sum_{l=0}^{\infty}e^{-j\omega l}e^{-j\omega 3} = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3} \sum_{l=0}^{\infty}(e^{-j\omega})^{l} $

$ = \frac{1}{1-e^{-j\omega}} - e^{-j\omega 3}\frac{1}{1-e^{-j\omega}} $

Answer 3

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(u[n]-u[n-3])e^{-j\omega n} =\sum_{n=-\infty}^{\infty}(\delta [n]+\delta [n-1]+\delta[n-2])e^{-j\omega n} $

$ =\sum_{n=-\infty}^{\infty}(\delta [n]e^{-j\omega n}+\delta [n-1]e^{-j\omega n}+\delta[n-2]e^{-j\omega n}]) $

$ =\delta [0]e^{-j0\omega}+\delta [1]e^{-j\omega}+\delta[2]e^{-j2\omega} $


$ =1+e^{-j\omega}+e^{-j2\omega} $

so

Answer 4

$ x[n] = u[n]-u[n-3] = \delta [n] + \delta [n-1] + \delta [n-2]; $

by Fourier's linearity,

$ \mathcal{X}(\omega)=\mathcal{F}(x[n])= \mathcal{F}(\delta [n]) + \mathcal{F}(\delta [n-1]) + \mathcal{F}(\delta [n-2]); $

from the table Discrete-time Fourier Transform Pairs and Properties

$ \mathcal{F}(\delta[n])= 1; $

$ \mathcal{F}(\delta[n-n0])= e^{-j\omega n0}; $

\mathcal{F}(x[n])= 1 + e^{-j\omega} + e^{-2j\omega n0};


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010