Revision as of 13:22, 8 December 2010 by Smallipu (Talk | contribs)


Statement: I am going to show that if V is a subspace of Rn. then dim(V)+dim(Vorth)=n

Because of the lack of the orthagonal symbol in the wikipedia formatting page, I will be type 'orth' in a superscript to symbolize that. 


Analysis:

First, let us say we have the following:

V which is a subspace of Rn, and {v1,v2,v3,..,vk} are a basis for V. (The entries in the braces are vectors)

To refresh, a basis means those entries span V, AND are also linearly independent. 


So, therefore, then dim(V)=k (k is the number of vectors in our basis, which obviously is a non-finite amount, so I use k to denote that fact.)


Now that we have those assumptions and definitions out of the way, let me construct a matrix for you.


We will call this matrix A (seems to the most common letter in the linear algebra world...but i digress)


A=

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva