Revision as of 15:24, 23 November 2010 by Dfan (Talk | contribs)

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform $ f(t) = \frac{1}{2 \pi i} \int_{ \gamma - i \infty}^{ \gamma + i \infty} F(s) e^{st}\,ds, $
Properties of the Laplace Transform
Function Laplace Transform ROC
$ f(t) \ $ $ F(s) \ $ ROC $ R $
$ af_1(t)+bf_2(t) \ $ $ aF_1(s)+bF_2(s) \ $ at least $ R_1 \cap R_2 $
$ af(at) \ $ $ F\left( \frac{s}{a} \right) $
$ e^{at}f(t) \ $ $ F(s-a) \ $
$ u(t-a) = \begin{cases} f(t-a) & t>a \\ 0 & t<a \end{cases} $ $ e^{-as}F(s) \ $
$ f'(t) \ $ $ sF(s)-f(0) \ $
$ f''(t) \ $ $ s^2F(s)-sf(0)-f'(0) \ $
$ f^{(n)}(t) \ $ $ s^{n}F(s)-\sum_{k=1}^ns^{n-k}f^{(k)}(0) \ $
$ -tf(t) \ $ $ F'(s) \ $
$ t^2f(t) \ $ $ F''(s) \ $
$ (-1)^{(ntn)}f(t) \ $ $ F^{(n)}(s) \ $
$ \int_{0}^{t} f(u) du \ $ $ \frac{F(s)}s \ $
$ \int_{0}^{t}...\int_{0}^{t}f(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} f(u)du \ $ $ \frac{F(s)}{s^n} \ $
$ \int_{0}^{t}f(u)g(t-u)du \ $ $ F(s)G(s) \ $
$ \frac{f(t)}t \ $ $ \int_{s}^{\infty}F(u)du \ $
$ f(t)=f(t+T) \ $ $ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}f(u)du \ $
$ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}f(u)du $ $ \frac{F(\sqrt{s})}s \ $
$ \int_{0}^{\infty}J_0(2\sqrt{ut})f(u)du \ $ $ \frac1sF\left(\frac1s\right) \ $
$ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})f(u)du \ $ $ \frac1{s^{n+1}}F\left(\frac1s\right) \ $
$ \int_{0}^{t}J_0(2\sqrt{u(t-u)})f(u)du \ $ $ \frac{F(s+\frac1s)}{s^2+1} \ $
$ f(t^2) \ $ $ \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}F(u)du \ $
$ \int_{0}^{\infty}\frac{t^uf(u)}{\Gamma(u+1)}du \ $ $ \frac{F(\ln s)}{s\ln s} \ $
$ \sum_{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt} \ $ $ \frac{P(s)}{Q(s)} \ $
please continue place formula here
Laplace Transform Pairs
Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $ $ 1 \ $ $ \frac{1}{s} \ $
$ t \ $ $ \frac1{s^2} \ $
$ \frac{t^{n-1}}{(n-1)!}, \ 0!=1 \ $ $ \frac1{s^n}, \ n=1,2,3,... \ $
$ \frac{t^{n-1}}{\Gamma(n)} \ $ $ \frac1{s^n}, \ n>0 \ $
$ e^{at}\ $ $ \frac1{s-a}\ $
$ \frac{t^{n-1}e^{at}}{(n-1)!}, \ 0!=1\ $ $ \frac1{(s-a)^n}, \ n=1,2,3,...\ $
$ \frac{t^{n-1}e^{at}}{\Gamma(n)}\ $ $ \frac1{(s-a)^n}, \ n>0\ $
$ \frac{\sin {at}}{a} \ $ $ \frac1{s^2+a^2}\ $
$ \cos {at} \ $ $ \frac{s}{s^2+a^2} \ $
$ \frac{e^{bt}\sin{at}}{a} \ $ $ \frac1{(s-b)^2+a^2}\ $
$ e^{bt}\cos{at}\ $ $ \frac{s-b}{(s-b)^2+a^2}\ $
$ \left(\frac{{sh}\ {at}}{a}\right)\ $ $ \frac{1}{s^2-a^2} \ $
$ {ch}\ {at}\ $ $ \frac{s}{s^2-a^2}\ $
$ \frac{e^{bt}{sh}\ {at}}a\ $ $ \frac1{(s-b)^2-a^2}\ $
$ e^{bt} {ch}\ {at}\ $ $ \frac{s-b}{(s-b)^2-a^2} \ $
$ \frac{e^{bt}-e^{at}}{b-a}\ $ $ \frac1{(s-a)(s-b)},\ a \ne b\ $
$ \frac{be^{bt}-ae^{at}}{b-a}\ $ $ \frac{s}{(s-a)(s-b)},\ a \ne b \ $
$ \frac{\sin {at}-at\cos{at}}{2a^3}\ $ $ \frac1{(s^2+a^2)^2}\ $
$ \frac{t\sin {at}}{2a}\ $ $ \frac{s}{(s^2+a^2)^2}\ $
$ \frac{\sin {at}+at\cos {at}}{2a}\ $ $ \frac{s^2}{(s^2+a^2)^2}\ $
$ \cos {at}-\frac12at\sin {at}\ $ $ \frac{s^3}{(s^2+a^2)^2}\ $
$ t\cos {at}\ $ $ \frac{s^2-a^2}{(s^2+a^2)^2}\ $
$ \frac{at\ {ch}\ {at}-{sh}\ {at}}{2a^3}\ $ $ \frac{1}{(s^2-a^2)^2}\ $
$ \frac{t\ {sh}\ {at}}{2a}\ $ $ \frac{s}{(s^2-a^2)^2}\ $
$ \frac{{sh}\ {at}+at\ {ch}\ {at}}{2a}\ $ $ \frac{s^2}{(s^2-a^2)^2}\ $
$ {ch}\ {at}+\frac12at\ {sh}\ {at} \ $ $ \frac{s^3}{(s^2-a^2)^2}\ $
$ t\ {ch}\ {at}\ $ $ \frac{s^2+a^2}{(s^2-a^2)^2}\ $
$ \frac{(3-a^2t^2)\sin {at}-3at\cos {at}}{8a^5}\ $ $ \frac{1}{(s^2+a^2)^3}\ $
$ \frac{t\sin {at}-at^2\cos {at}}{8a^3}\ $ $ \frac{s}{(s^2+a^2)^3}\ $
$ \frac{(1+a^2t^2)\sin {at}-at\cos {at}}{8a^3}\ $ $ \frac{s^2}{(s^2+a^2)^3}\ $
$ \frac{3t\sin {at}+at^2\cos {at}}{8a}\ $ $ \frac{s^3}{(s^2+a^2)^3}\ $
$ \frac{(3-a^2t^2)\sin {at}+5at\cos {at}}{8a}\ $ $ \frac{s^4}{(s^2+a^2)^3}\ $
$ \frac{(8-a^2t^2)\cos {at}-7at\sin {at}}{8}\ $ $ \frac{s^5}{(s^2+a^2)^3}\ $
$ \frac{t^2\sin {at}}{2a}\ $ $ \frac{3s^2-a^2}{(s^2+a^2)^3}\ $
$ \frac12t^2\cos {at}\ $ $ \frac{s^3-3a^2s}{(s^2+a^2)^3}\ $
$ \frac16t^3\cos {at}\ $ $ \frac{s^4-6a^2s^2+a^4}{(s^2+a^2)^4}\ $
$ \frac{t^3\sin {at}}{24a}\ $ $ \frac{s^3-a^2s}{(s^2+a^2)^4}\ $
$ \frac{3+a^2t^2\ {sh}\ {at}-3at\ {ch}\ {at}}{8a^5}\ $ $ \frac{1}{(s^2-a^2)^3}\ $
$ \frac{at^2\ {ch}\ {at}-t\ {sh}\ {at}}{8a^3}\ $ $ \frac{s}{(s^2-a^2)^3}\ $
$ \frac{at\ {ch}\ {at}+(a^2t^2-1)\ {sh}\ {at}}{8a^3}\ $ $ \frac{s^2}{(s^2-a^2)^3}\ $
$ \frac{3t\ {sh}\ {at}+at^2\ {ch}\ {at}}{8a}\ $ $ \frac{s^3}{(s^2-a^2)^3}\ $
$ \frac{(3+a^2t^2)\ {sh}\ {at}+5at\ {ch}\ {at}}{8a}\ $ $ \frac{s^4}{(s^2-a^2)^3}\ $
$ \frac{(8+a^2t^2)\ {ch}\ {at}+7at\ {sh}\ {at}}{8}\ $ $ \frac{s^5}{(s^2-a^2)^3}\ $
$ \frac{t^2\ {sh}\ {at}}{2a}\ $ $ \frac{3s^2+a^2}{(s^2-a^2)^3}\ $
$ \frac12t^2\ {ch}\ {at}\ $ $ \frac{s^3+3a^2s}{(s^2-a^2)^3}\ $
$ \frac16t^3\ {ch}\ {at}\ $ $ \frac{s^4+6a^2s^2+a^4}{(s^2-a^2)^4}\ $
$ \frac{t^3\ {sh}\ {at}}{24a}\ $ $ \frac{s^3+a^2s}{(s^2-a^2)^4}\ $
$ \frac{e^{at/2}}{3a^2} \left \{ \sqrt{3} \sin {\frac{\sqrt{3}at}{2}}-\cos {\frac{\sqrt{3}at}{2}}+e^{-3at/2} \right \}\ $ $ \frac{1}{s^3+a^3}\ $
$ \frac{e^{at/2}}{3a^2} \left \{ \cos {\frac{\sqrt{3}at}{2}}+ \sqrt{3}\sin {\frac{\sqrt{3}at}{2}}-e^{-3at/2} \right \}\ $ $ \frac{s}{s^3+a^3}\ $
$ \frac13 \left \{ e^{-at}+ 2e^{at/2} \cos {\frac{\sqrt{3}at}{2}} \right \}\ $ $ \frac{s^2}{s^3+a^3}\ $
$ \frac{e^{-at/2}}{3a^2} \left \{e^{3at/2}- \cos {\frac{\sqrt{3}at}{2}}- \sqrt{3}\sin {\frac{\sqrt{3}at}{2}} \right \}\ $ $ \frac{1}{s^3-a^3}\ $
$ \frac{e^{-at/2}}{3a} \left \{ \sqrt{3}\sin {\frac{\sqrt{3}at}{2}}-\cos {\frac{\sqrt{3}at}{2}}+e^{3at/2} \right \}\ $ $ \frac{s}{s^3-a^3}\ $
$ \frac13 \left \{ e^{at}+ 2e^{-at/2} \cos {\frac{\sqrt{3}at}{2}} \right \}\ $ $ \frac{s^2}{s^3-a^3}\ $
$ \frac1{4a^3} \left (\sin {at}\ {ch}\ {at}-\cos {at}\ {sh}\ {at} \right )\ $ $ \frac{1}{s^4+4a^4}\ $
$ \frac{\sin {at}\ {sh}\ {at}}{2a^2}\ $ $ \frac{s}{s^4+4a^4}\ $
$ \frac1{2a} \left (\sin {at}\ {ch}\ {at}+\cos {at}\ {sh}\ {at} \right )\ $ $ \frac{s^2}{s^4+4a^4}\ $
$ \cos {at}\ {ch}\ {at}\ $ $ \frac{s^3}{s^4+4a^4}\ $
$ \frac1{2a^3} \left (\ {sh}\ {at}-\sin {at} \right )\ $ $ \frac{1}{s^4-a^4}\ $
$ \frac1{2a^2} \left (\ {ch}\ {at}-\cos {at} \right )\ $ $ \frac{s}{s^4-a^4}\ $
$ \frac1{2a} \left (\ {sh}\ {at}+\sin {at} \right )\ $ $ \frac{s^2}{s^4-a^4}\ $
$ \frac12 \left (\ {ch}\ {at}+\cos {at} \right )\ $ $ \frac{s^3}{s^4-a^4}\ $
$ \frac{e^{-bt}-e^{-at}}{2(b-a)\sqrt{\pi t^3}}\ $ $ \frac1{\sqrt{s+a}+\sqrt{s+b}}\ $
$ \frac{erf\ \sqrt{at}}{\sqrt{a}}\ $ $ \frac1{s\sqrt{s+a}}\ $
$ \frac{e^{at}\ {erf}\ \sqrt{at}}{\sqrt{a}}\ $ $ \frac1{\sqrt{s}(s-a)}\ $
$ e^{at} \left \{\frac1{\sqrt{\pi t}}-be^{b^{2}t}\ {erfc}\ (b\sqrt{t}) \right \}\ $ $ \frac1{\sqrt{s-a}+b}\ $
$ J_0(at)\ $ $ \frac1{\sqrt{s^2+a^2}}\ $
$ I_0(at)\ $ $ \frac1{\sqrt{s^2-a^2}}\ $
$ a^nJ_n(at)\ $ $ \frac{{\left (\sqrt{s^2+a^2}-s \right )}^n}{\sqrt{s^2+a^2}},\quad n>-1 \ $
$ a^nI_n(at)\ $ $ \frac{{\left (s- \sqrt{s^2-a^2} \right )}^n}{\sqrt{s^2-a^2}},\quad n>-1 \ $
$ J_0(a\sqrt{t(t+2b)})\ $ $ \frac{e^{b \left (s- \sqrt{s^2+a^2} \right )}}{\sqrt{s^2+a^2}} \ $
$ \begin{cases} J_0(a\sqrt{t^2-b^2}) & t>b \\ 0 &t<b \end{cases} \ $ $ \frac{e^{-b\sqrt{s^2+a^2}}}{\sqrt{s^2+a^2}} \ $
$ tJ_0(at)\ $ $ \frac1{(s^2+a^2)^{3/2}}\ $
$ J_0(at)-atJ_1(at)\ $ $ \frac{s^2}{(s^2+a^2)^{3/2}}\ $
$ \frac{tI_1(at)}{a}\ $ $ \frac1{(s^2-a^2)^{3/2}}\ $
$ I_0(at)+atI_1(at)\ $ $ \frac{s}{(s^2+a^2)^{3/2}}\ $
$ f(t)=n,\ n \leqq t\ <n+1,\ n=0,1,2,... \ $ $ \frac1{s(e^s-1)}\ =\ \frac{e^{-s}}{s(1-e^{-s})}\ $
$ f(t)= \sum_{k=1}^{[t]} r^k\ $ $ \frac1{s(e^s-r)}\ =\ \frac{e^{-s}}{s(1-re^{-s})}\ $
$ f(t)= r^n,\ n\leqq t<n+1,\ n=0,1,2,...\ $ $ \frac{s^s-1}{s(e^s-r)}\ =\ \frac{1-e^{-s}}{s(1-re^{-s})}\ $
$ \frac{\cos {2\sqrt{at}}}{\sqrt{ \pi t}}\ $ $ \frac{s^{-a/s}}{\sqrt{s}}\ $
$ \frac{\sin {2\sqrt{at}}}{\sqrt{ \pi a}}\ $ $ \frac{e^{-a/s}}{s^{3/2}}\ $
$ \left ( \frac{t}{a} \right )^{n/2}J_n(2\sqrt{at})\ $ $ \frac{e^{-a/s}}{s^n+1} \quad n>-1 \ $
$ \frac{e^{-a^2/4t}}{\sqrt{ \pi t}}\ $ $ \frac{e^{-a\sqrt{s}}}{\sqrt{s}}\ $
$ \frac{a}{2\sqrt{ \pi t^3}}e^{-a^2/4t}\ $ $ e^{-a\sqrt{s}}\ $
$ erf(a/2\sqrt{t})\ $ $ \frac{1-e^{-a\sqrt{s}}}{s}\ $
$ erfc(a/2\sqrt{t})\ $ $ \frac{e^{-a\sqrt{s}}}{s}\ $
$ e^{b(bt+a)}erfc \left ( b\sqrt{t}+\frac{a}{2\sqrt{t}} \right )\ $ $ \frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}\ $
$ \frac1{\sqrt{\pi t}a^{2n+1}}\int_{0}^{\infty}u^ne^{-u^2/4a^2t}J_{2n}(2\sqrt{u})du \ $ $ \frac{e^{-a\sqrt{s}}}{s^{n+1}} \quad n>-1\ $
$ \frac{e^{-bt}-e^{-at}}{t}\ $ $ \ln \left ( \frac{s+a}{s+b} \right )\ $
$ Ci(at)\ $ $ \frac{\ln [(s^2+a^2)/a^2]}{2s}\ $
$ Ei(at)\ $ $ \frac{\ln [(s+a)/a]}{s}\ $
$ \ln t\ $ $ \begin{array}{lcl} -\frac{(\gamma+\ln s)}{s} \\ \gamma = constant Euler=0.5772156... \end{array} \ $
$ \frac{2(\cos {at}-\cos {bt})}{t}\ $ $ \ln \left ( \frac{s^2+a^2}{s^2+b^2} \right )\ $
$ \ln^2 t\ $ $ \begin{array}{lcl} \frac{{\pi}^2}{6s}+\frac{ \left (\gamma+\ln s \right )^2}{s} \\ \gamma = constant Euler=0.5772156... \end{array} \ $
$ \begin{array}{lcl} - \left (\ln t+\gamma \right ) \\ \gamma = constant Euler=0.5772156... \end{array} \ $ $ \frac{\ln s}{s}\ $
$ \begin{array}{lcl} \left ( \ln t+\gamma \right )^2-\frac16{\pi}^2 \\ \gamma = constant Euler=0.5772156... \end{array} \ $ $ \frac{\ln^2 s}{s}\ $
$ t^n\ln t\ $ $ \frac{\Gamma'(n+1)-\Gamma(n+1)\ln s}{s^{n+1}} \quad n>-1\ $
$ \frac{\sin {at}}{t}\ $ $ {Arc}\ {tg}\ (a/s)\ $
$ Si(at)\ $ $ \frac{{Arc}\ {tg}\ (a/s)}{s}\ $
$ \frac{e^{-2\sqrt{at}}}{\sqrt{\pi t}} \ $ $ \frac{e^{a/s}}{\sqrt{s}}\ erfc(\sqrt{a/s})\ $
$ \frac{2a}{\sqrt{\pi }}e^{-a^2t^2}\ $ $ e^{s^2/4a^2}\ erfc(s/2a)\ $
$ erf(at)\ $ $ \frac{e^{s^2/4a^2}\ erfc(s/2a)}{s}\ $
$ \frac1{\sqrt{\pi (t+a)}}\ $ $ \frac{e^{as}erfc\sqrt{as}}{\sqrt{s}}\ $
$ \frac1{t+a}\ $ $ e^{as}Ei(as)\ $
$ \frac1{t^2+a^2}\ $ $ \frac1a \left [ \cos {as} \left \{ \frac{\pi }{2}-Si(as) \right \}-\sin {as}\ Ci(as) \right ]\ $
$ \frac{t}{t^2+a^2}\ $ $ \sin {as} \left \{ \frac{\pi }{2}-Si(as) \right \}+\cos {as}\ Ci(as)\ $
$ {Arc}\ {tg}(t/a)\ $ $ \frac{\cos {as} \left \{ \frac{\pi }{2}-Si(as) \right \}-\sin {as}\ Ci(as)}{s}\ $
$ \frac12\ln \left (\frac{t^2+a^2}{a^2} \right )\ $ $ \frac{\sin {as} \left \{ \frac{\pi }{2}-Si(as) \right \}+\cos {as}\ Ci(as)}{s}\ $
$ \frac1t \ln \left ( \frac{t^2+a^2}{a^2} \right )\ $ $ \left [ \frac{\pi}{2}-Si(as) \right ]^2 + Ci^2(as)\ $
$ \mathcal{N}(t)\ =\ fonction nulle\ $ $ 0\ $
$ \delta(t)\ =\ fonction delta\ $ $ 1\ $
$ \delta(t-a)\ $ $ e^{-as}\ $
$ \mu(t-a)\ $ $ \frac{e^{-as}}{s}\ $
$ \frac xa+\frac2{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin {\frac{n \pi x}{a}} \cos {\frac{n\pi t}{a}}\ $ $ \frac{{sh}\ sx}{s\ {sh}\ sa}\ $
$ \frac4{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \sin {\frac{(2n-1) \pi x}{2a}} \sin {\frac{(2n-1)\pi t}{2a}}\ $ $ \frac{{sh}\ sx}{s\ {ch}\ sa}\ $
$ |fracta+\frac2{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cos {\frac{n \pi x}{a}} \sin {\frac{n\pi t}{a}}\ $ $ \frac{{ch}\ sx}{s\ {sh}\ as}\ $
$ 1+\frac4{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} \cos {\frac{n \pi x}{a}} \cos {\frac{(2n-1)\pi t}{2a}}\ $ $ \frac{{ch}\ sx}{s\ {ch}\ as}\ $
$ \frac {xt}a+\frac{2a}{{\pi}^2 } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin {\frac{n \pi x}{a}} \sin {\frac{n\pi t}{a}}\ $ $ \frac{{sh}\ sx}{s^2\ {sh}\ sa}\ $
$ x+\frac{8a}{{\pi}^2 } \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \sin {\frac{(2n-1) \pi x}{2a}} \cos {\frac{(2n-1) \pi t}{2a}}\ $ $ \frac{{sh}\ sx}{s^2\ {ch}\ sa}\ $
$ \frac{t^2}{2a}+\frac{2a}{{\pi}^2 } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos {\frac{n \pi x}{a}} \left ( 1-\cos {\frac{n \pi t}{a}} \right )\ $ $ \frac{{ch}\ sx}{s^2\ {sh}\ sa}\ $
$ t+\frac{8a}{{\pi}^2 } \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^2} \cos {\frac{(2n-1) \pi x}{2a}} \sin {\frac{(2n-1) \pi t}{2a}}\ $ $ \frac{{ch}\ sx}{s^3\ {sh}\ sa}\ $
$ \frac12(t^2+x^2-a^2)-\frac{16a^2}{{\pi}^3 } \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3} \cos {\frac{(2n-1) \pi x}{2a}} \cos {\frac{(2n-1) \pi t}{2a}}\ $ $ \frac{{ch}\ sx}{s^3\ {ch}\ sa}\ $
$ \frac{2 \pi}{a^2} \sum_{n=1}^{\infty} (-1)^nne^{-(2n-1)^2{\pi}^2t/4a^2}\sin {\frac{n \pi x}{a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{{sh}\ a\sqrt{s}}\ $
$ \frac{2 \pi}{a^2} \sum_{n=1}^{\infty} (-1)^nne^{-(2n-1)^2{\pi}^2t/4a^2}\sin {\frac{n \pi x}{a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{{sh}\ a\sqrt{s}}\ $
$ \frac{2 \pi}{a^2} \sum_{n=1}^{\infty} (-1)^nne^{-(2n-1)^2{\pi}^2t/4a^2}\sin {\frac{n \pi x}{a}}\ $ $ \frac{{sh}\ x\sqrt{s}}{{sh}\ a\sqrt{s}}\ $
$ \frac{\pi}{a^2} \sum_{n=1}^{\infty} (-1)^{n-1}(2n-1)e^{-(2n-1)^2{\pi}^2t/4a^2}\cos {\frac{(2n-1) \pi x}{2a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{{ch}\ a\sqrt{s}}\ $
$ \frac{2}{a} \sum_{n=1}^{\infty} (-1)^{n-1}e^{-(2n-1)^2{\pi}^2t/4a^2}\sin {\frac{(2n-1) \pi x}{2a}}\ $ $ \frac{{sh}\ x\sqrt{s}}{\sqrt{s}{ch}\ a\sqrt{s}}\ $
$ \frac1a+\frac2a\sum_{n=1}^{\infty} (-1)^ne^{-n^2{\pi}^2t/a^2}\cos {\frac{n \pi x}{a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{\sqrt{s}{sh}\ a\sqrt{s}}\ $
$ \fracxa+\frac2{\pi}\sum_{n=1}^{\infty} \frac{(-1)^n}{n}e^{-n^2{\pi}^2t/a^2}\sin {\frac{n \pi x}{a}}\ $ $ \frac{{sh}\ x\sqrt{s}}{s{sh}\ a\sqrt{s}}\ $
$ 1+\frac4{\pi}\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}e^{-(2n-1)^2{\pi}^2t/a^2}\cos {\frac{(2n-1) \pi x}{2a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{s{ch}\ a\sqrt{s}}\ $
$ \frac{xt}{a}+\frac{2a^2}{{\pi}^3}\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}(1-e^{-n^2{\pi}^2t/a^2})\sin {\frac{n \pi x}{a}}\ $ $ \frac{{sh}\ x\sqrt{s}}{s^2{sh}\ a\sqrt{s}}\ $
$ \frac12(x^2+a^2)+t-\frac{16a^2}{{\pi}^3}\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3}e^{-{(2n-1)}^2{\pi}^2t/a^2}\cos {\frac{(2n-1) \pi x}{2a}}\ $ $ \frac{{ch}\ x\sqrt{s}}{s^2{ch}\ a\sqrt{s}}\ $
$ af_1(s)+bf_2(s)\ $ $ af_1(s)+bf_2(s)\ $
$ af_1(s)+bf_2(s)\ $ $ af_1(s)+bf_2(s)\ $

Back to Collective Table

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison