Revision as of 07:19, 19 November 2010 by Dmustaf (Talk | contribs)

Table of Infinite Integrals
General Rules
$ \int a d x = a x $
$ \int a f ( x ) d x = a \int f ( x ) d x $
$ \int ( u \pm v \pm w \pm \cdot \cdot \cdot ) d x = \int u d x \pm \int v d x \pm \int w d x \pm \cdot \cdot \cdot $
$ \int u d v = u v - \int v d u $
$ \int f ( a x ) d x = \frac{1}{a} \int f ( u ) d u $
$ \int F { f ( x ) } d x = \int F ( u ) \frac{dx}{du} d u = \int \frac{F ( u )}{f^' ( x )} d u \qquad u = f ( x ) $
$ \int u^n d u = \frac{u^{n+1}}{n+1} \qquad n \neq -1 $
$ \int \frac{d u}{u} = \ln u \ ( if \ u > 0 ) \ or \ln {-u} \ ( if \ u < 0 ) = \ln \left | u \right | $
$ \int e^u d u = e^u $
$ \int a^u d u = \int e^{u \ln a} d u = \frac{e^{u \ln a}}{\ln a} = \frac{a^u}{\ln a} \qquad a > 0 \ and \ a \neq 1 $
$ \int \sin u \ d u = - \cos u $
$ \int \cos u \ d u = \sin u $
$ \int \tan u \ d u = - \ln {\cos u} $
$ \int \cot u \ d u = \ln {\sin u} $
$ \int \frac{d u}{\cos u} = \ln { \left ( \frac{1}{\cos u} + \tan u \right )} = \ln{\tan {\left ( \frac{u}{2}+\frac{\pi}{4}\right )}} $
$ \int \frac{d u}{\sin u} = \ln { \left ( \frac{1}{\sin u} - \cot u \right )} = \ln{\tan { \frac{u}{2}}} $
$ \int \frac{d u}{\cos ^2 u} = \tan u $
$ \int \frac{d u}{\sin ^2 u} = - \cot u $
$ \int \tan ^2 u = \tan u - u $
Important Transformations
$ \int F( a x + b) d x =\frac{1}{a} \int F( u) d x \qquad u = a x + b $

Alumni Liaison

EISL lab graduate

Mu Qiao