Revision as of 10:21, 30 November 2010 by Nelder (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

1.2 Probability Space

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


1.2.1 Probability Space

• Probability Space = $ \left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\} $

$ \mathcal{S}\sim $ sample space

$ \mathcal{F}\left(\mathcal{S}\right)\sim $ event space , collection of subsets of $ \mathcal{S} $ (including sample space itself)

$ \mathcal{P}\sim $ maps $ \mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right] $

1.2.2 Event space

• Event space $ F\left(S\right) $ or $ F $ is a non-empty collection of subset of $ S $ satisfying the following three closure properties:

1. If $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ .

2. If for some finite $ n $ , $ A_{1},A_{2},\cdots,A_{n}\in F\left(S\right) $ , then $ \bigcup_{i=1}^{n}A_{i}\in F\left(S\right) $ .

3. If $ A_{i}\in F\left(S\right) $ , $ i=1,2,\cdots $ , then $ \bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right) $ .

• A set $ F\left(S\right) $ with these 3 properties is called a sigma-field ($ \sigma $-field). If only 1 and 2 are satisfied, we have a field.

• It follows from three properties that $ \varnothing,S\in F\left(S\right) $ .

– Suppose $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ , $ A\cup\bar{A}=S\in F\left(S\right) $ , and $ \bar{S}=\varnothing\in F\left(S\right) $ .

• What about intersection? Suppose $ A,B\in F\left(S\right) $ . Is $ A\cap B\in F\left(S\right) $ ?

$ A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right) $ .

1.2.3 Axioms of probability

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett