Revision as of 12:03, 14 November 2010 by Wang779 (Talk | contribs)

Table of Definite Integrals
General Rules
$ \int\limits_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x } $
$ \int\limits_{a}^{b} f ( x ) d x = \int\limits_{a}^{b} \frac{d}{dx} g ( x ) d x = g ( x ) |_{a}^{b} = g ( b ) - g ( a ) $
$ \int\limits_{a}^{\infty} d x = \lim_{n \to \infty} \int\limits_{a}^{b} f ( x ) d x $
$ \int\limits_{-\infty}^{\infty} f ( x ) d x = \lim_{a \to - \infty \ b \to \infty} \int\limits_{a}^{b} f ( x ) d x $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett