Revision as of 15:56, 8 November 2010 by Dfan (Talk | contribs)

IT SEEMS LIKE THE VARIABLES s AND t WERE INTERCHANGED BELOW.

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
function $ f(s) \ $ Laplace transform $ F(t) \ $ ROC $ R $
$ af_1(s)+bf_2(s) \ $ $ aF_1(t)+bF_2(t) \ $
$ f\left( \frac{s}{a} \right) $ $ aF(at) \ $
$ f(s-a) \ $ $ e^{at}F(t) \ $
$ e^{-as}f(s) \ $ $ u(t-a) = \begin{cases} F(t-a) & t>a \\ 0 & t<a \end{cases} $
$ sf(s)-F(0) \ $ $ F'(t) \ $
$ s^2f(s)-sF(0)-F'(0) \ $ $ F''(t)\ $
$ s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0)\ $ $ F^{(n)}(t)\ $
$ f'(s)\ $ $ -tF(t)\ $
$ f''(s)\ $ $ t^2F(t)\ $
$ f^{(n)}(s)\ $ $ (-1)^{(ntn)}F(t)\ $
$ \frac{f(s)}s\ $ $ \int_{0}^{t} F(u) du \ $
$ \frac{f(s)}{s^n} \ $ $ \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du\ $
$ f(s)g(s)\ $ $ \int_{0}^{t}F(u)G(t-u)du\ $
$ \int_{s}^{\infty}f(u)du \ $ $ \frac{F(t)}t \ $
$ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du \ $ $ F(t)=F(t+T)\ $
$ \frac{f(\sqrt{s})}s\ $ $ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du $
$ \frac1sf\left(\frac1s\right)\ $ $ \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du\ $
$ \frac1{g^{n+1}}f\left(\frac1s\right)\ $ $ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du \ $
$ \frac{f(s+\frac1s)}{s^2+1}\ $ $ \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du\ $
$ \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}f(u)du\ $ $ F(t^2)\ $
$ \frac{f(\ln s)}{s\ln s}\ $ $ \int_{0}^{\infty}\frac{t^uF(u)}{\Gamma(u+1)}du\ $
$ \frac{P(s)}{Q(s)}\ $ $ \sum_{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt}\ $
$ \frac1s\ $ $ 1\ $
$ \frac1{s^2}\ $ $ t(s)\ $
$ \frac1{s^n} n=1,2,3,...\ $ $ \frac{t^{n-1}}{(n-1)!}, 0!=1\ $
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood