Revision as of 07:22, 26 October 2010 by Mboutin (Talk | contribs)

Table of Derivatives

Laplace Transform Pairs and Properties
General Rules
Derivative of a constant $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $
Linearity $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $
Please continue write a rule here
Leibnitz Rule for Successive Derivatives of a Product
first order $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $
second order $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $
third order $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $
n-th order $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + $
Derivatives of trigonometric functions
sine sin u $ \cos u \frac{du}{dx} $
add function here derivative here
Derivatives of exponential and logarithm functions
exponential eu $ e^u \frac{du}{dx} $
add function here derivative here
Derivatives of hyperbolic functions
hyperbolic sine $ \text{sh } u $ $ \text{ch } u \frac{du}{dx} $
add function here derivative here


Back to Collective Table of Formulas

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett