A work in progress.
The Continuous Time Fourier Transform (CTFT)
CTFT:
$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $
Inverse CTFT:
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $
Example:
Let $ x(t) = \delta (t) $
$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $
Therefore, CTFT of $ \delta (t) = 1 $