Revision as of 05:46, 23 October 2010 by Ksoong (Talk | contribs)

A work in progress.

The Continuous Time Fourier Transform (CTFT)

CTFT:

$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $

Inverse CTFT:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $

Example:

Let $ x(t) = \delta (t) $

$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $

Therefore, CTFT of $ \delta (t) = 1 $

Properties

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal