Revision as of 15:09, 19 October 2010 by Ksoong (Talk | contribs)

Practice Question 2, ECE438 Fall 2010, Prof. Boutin

On Computing the z-tramsfprm of a discrete-time signal.


Compute the z-transform of the discrete-time signal

$ x[n]= 4^n \left(u[n+3]-u[n-4] \right) $.

Note: there are two tricky parts in this problem. Do you know what they are?


Post Your answer/questions below.

$ x[n] = 4^n u[n+3] - 4^n u[n-4] $

$ x[n] = \sum_{n=-\infty}^{\infty} 4^n u[n+3] z^{-n} - \sum_{n=-\infty}^{\infty} 4^n u[n-4] z^{-n} $

$ {\color{red}\not}x {\color{red}\not}[n] {\color{red}X(z)} = \sum_{n=3}^{\infty} 4^n z^{-n} - \sum_{n=-\infty}^{4} 4^n z^{-n} $

$ {\color{red}\not}x {\color{red}\not}[n] {\color{red}X(z)}= \sum_{n=0}^{\infty} (\frac{4}{z})^n - 1 - 4^1z^{-1} - 4^2z^{-2} - 4^3z^{-3} - \sum_{n=4}^{\infty} (\frac{4}{z})^n $

this is the mistake I made on my exam - could you please clarify my work, professor?

  • Certainly! This is a very common mistake: splitting a sum that converges for most z's into two sums that diverge for most z's. The key is to notice that the first sum above has a finite number of terms: so convergence of the entire sum is guaranteed, unless one (or more) of the terms of the sum diverge (for example, 1/z diverges when z=0). Observe that, by splitting the sum this way, you get an empty ROC. The correct ROC for this z-transform is actually all the finite complex plane except zero. -pm
  • Another thing I see is the manipulation of the sum with negative indices, namely :
$ \sum_{n=-\infty}^{4} 4^n z^{-n } = \sum_{n=4}^{\infty}(\frac{4}{z})^n $
which is incorrect. The correct way to manipulate it is the following:
$ \begin{align} \sum_{n=-\infty}^{4} 4^n z^{-n } &= \sum_{k=\infty}^{-4} 4^{-k} z^{k } \text{ (letting }k=-n), \\ &= \sum_{k=-4}^{\infty} 4^{-k} z^{k } \text{ (since the order of the terms in the sum does not matter)}, \\ &= 4^{4}z^{-4}+4^{3}z^{-3}+4^{2}z^{-2}+4^{1}z^{-1}+ \sum_{k=0}^{\infty} 4^{-k} z^{k } \end{align} $
Hope that helps! -pm

$ X(z) =\sum_{n=0}^{\infty} (\frac{4}{z})^n - 1 - 4^1z^{-1} - 4^2z^{-2} - 4^3z^{-3} - (4^{4}z^{-4}+4^{3}z^{-3}+4^{2}z^{-2}+4^{1}z^{-1}+ \sum_{k=0}^{\infty} 4^{-k} z^{k }) $


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang