Revision as of 13:17, 18 October 2010 by Severett (Talk | contribs)

Homework 8 Collaboration Area

Question on problem 15 in Sec 6.6.

I tried to obtain the expression for

s/(s + 1) * 1/(s+1)

but am not getting the correct result in the Laplace table of

t sin t.

I am using the convolution of cos(tau)*sin(t-tau). There is no t term in sight. Is it okay to read off the table? Even if it is, shouldn't the result be the same?

Answer:

To find the inverse Laplace transform of

s/(s + 1) * 1/(s+1)

you'll need to compute the convolution integral:

$ \int_0^t \cos(\tau)\sin(t-\tau)\ d\tau. $

You'll have to use a formula for the sine of the difference of two angles and be very careful. Remember, t acts like a constant in the integrals.

There is only one correct answer, so you should get it that way. (If it looks different than the back of the book, a trig identity might be at fault.)

    • Another way to solve this problem is to recognize that the given expression is the derivative of 1 / [(s+2)^2 + 1]].....therefore greatly simplifying the solution.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett